Verification through Accelerated testing Leading to Improved wave energy Designs (VALID)

Activity: Other


The VALID project will develop and validate a new test rig platform and procedures for accelerated hybrid testing that can be used across the wave energy sector to improve the reliability and survivability of the components and subsystems that form Wave Energy Converters (WECs). The methodology for accelerated hybrid testing combines both physical testing (physical test rigs) and virtual testing (simulated environment, numerical models and data). The VALID Hybrid Test Platform (VHTP) will become the interface that allows for seamless accelerated hybrid testing. With the long-term goal of establishing a standard for future use and making a step-change impact on the sector, the new test rig platform and methodology will be validated for a variety of WECs, critical components and subsystems through three different user cases.

Often faults in component and subsystems are detected through extensive and costly sea testing in late stages of device development (high TRLs) and finding a problem at late development stages can add significant cost and delays to initial schedules, eventually leading to company’s bankruptcy. Sound testing methods are thus needed to reduce the uncertainties, increase confidence in results, assist and guide the concept and subcomponents design, and thus largely assist in the decision-making progress.

The new hybrid testing platform with open access for models, testbeds and improved data management are all necessary to lower the cost on future technologies. VALID assembles the full value chain required from methodology and platform development (AVL, Aquatera), technology development (Corpower, IDOM, Wavepiston), LCOE (Julia F Chosaz Consult Engineering) to certification bodies (RINA-C) in order to develop an integrated solution with support from RTO (RISE, Tecnalia, Bimep) and academia (Aalborg University, TUDelft).
Held atOffshore Engineering
Degree of RecognitionInternational