Stormwater management model (SWMM) software has recently become a modelling tool for the simulation of intermittent water supply systems. However, SWMM is not capable of accurately simulating the air behaviour in the pipe-filling phase, missing, therefore, a relevant factor during pipe pressurization. This work proposes the integration of a conventional accumulator model in the existing SWMM hydraulic model to overcome this gap. SWMM source code was modified to calculate the air piezometric head inside the pipe based on the system boundary conditions, and the air piezometric head was incorporated in the SWMM flow rate pressure component. Experimental data were collected during the rapid filling of a pipe system for three possible configurations that are likely to occur in intermittent water supply pipe systems: no air release, small air release, and large air release. Results show that the improved SWMM better describes the effect of the air behaviour using the extended transport (EXTRAN) surcharge method when compared to the original SWMM. Results also show that the SLOT method with a predefined slot width is not suitable for this purpose; thus, further research is needed to assess if an adjusted slot width could provide better results