Data underlying the research on particle manipulation using hydrodynamic forcing, using a-priori particle manipulation algorithm and without Proportional-Integration-Derivative (PID) control



The reseach objective is to present a microfluidic approach to achieve the dynamic control of particle pathlines within a flow through microfluidic device. Our approach combines the design of a flow-through microfluidic flow cell with the ability to manipulate the streamlines of the flow and an optimization procedure to find a priori optimal particle path-lines. The experimental raw images were recorded with a sCMOS camera (PCO) with a pixel pitch of 6.5 μm. The camera was mounted on a microscope (Nikon Eclipse Ti) with a 1x objective. The acquisition frequency was 5 Hz corresponding to an average in-plane displacement of 4-6 pixels between two consecutive recordings. The zip file contains the raw images and the MATLAB script of the following experiments by using hydrodynamic forcing only:

1. Single particle deflection upward
2. Single particle deflection downward
3. Single particle trap
4. Two particles separation
5. Two particles coming closer to eachother
6. Two particles interchanging their position
Date made available6 May 2022
PublisherTU Delft - 4TU.ResearchData

Cite this