Tide-surge, tide and surge simulations output of 2D DCSM-FM v7 from 1980 to 2020 at Euro platform.



This dataset includes results of hydrodynamic simulations for Euro platform, an offshore structure located in the southern North Sea that serves as a beacon for shipping and a measurement platform for the location.

The results were generated with the 2D Dutch Continental Shelf Model - Flexible Mesh (DCSM, [Zijl and Groenenboom, 2019]), the successor of the version in Zijl et al. [2013,2015]. The model describes the tide-surge water level variability for the northwest European continental shelf between 15◦W to 13◦E and 43◦N to 64◦N by solving the depth-integrated shallow-water equations for hydrodynamic modeling of free-surface flows [Leendertse, 1967, Stelling, 1984].

Water level conditions are applied at the northern, western, and southern open boundaries. When modeling the tide-surge water levels, they are composed of the sum of the astronomical water levels and the surge. The tides are obtained from a harmonic expansion of 32 tidal constituents retrieved from the global ocean tide model FES2012 [Carr`ere et al., 2013] supplemented with the solar annual Sa constituent obtained from an earlier version of the model. The surge at the open boundaries is approximated by the time- and space-dependent inverse barometer correction. A smaller part of the tides is generated from the tidal potential within the model domain. When included, time- and space-varying atmospheric wind and pressure forcings are obtained from the ECMWF’s ERA5 reanalysis dataset [Hersbach et al., 2020].

In our simulations, we force the model by i) both tidal and meteorological (i.e., atmospheric wind and pressure) forcing, ii) tidal forcing only, and iii) meteorological forcing only. This enumeration also relates to the files included and described below.
Date made available21 Sep 2022
PublisherTU Delft - 4TU.ResearchData
Temporal coverage1980 - 2020
Date of data production2022
Geographical coverageNorthwest European continental shelf
Geospatial point51.99792, 3.27481

Cite this