TY - JOUR
T1 - 20-Fold Increased Limiting Currents in Oxygen Reduction with Cu-tmpa by Replacing Flow-By with Flow-Through Electrodes
AU - Ligthart, Nathalie E.G.
AU - van Langevelde, Phebe H.
AU - Padding, Johan T.
AU - Hetterscheid, Dennis G.H.
AU - Vermaas, David A.
PY - 2024
Y1 - 2024
N2 - Electrochemical oxygen reduction is a promising and sustainable alternative to the current industrial production method for hydrogen peroxide (H2O2), which is a green oxidant in many (emerging) applications in the chemical industry, water treatment, and fuel cells. Low solubility of O2 in water causes severe mass transfer limitations and loss of H2O2 selectivity at industrially relevant current densities, complicating the development of practical-scale electrochemical H2O2 synthesis systems. We tested a flow-by and flow-through configuration and suspension electrodes in an electrochemical flow cell to investigate the influence of electrode configuration and flow conditions on mass transfer and H2O2 production. We monitored the H2O2 production using Cu-tmpa (tmpa = tris(2-pyridylmethyl)amine) as a homogeneous copper-based catalyst in a pH-neutral phosphate buffer during 1 h of catalysis and estimated the limiting current density from CV scans. We achieve the highest H2O2 production and a 15-20 times higher geometrical limiting current density in the flow-through configuration compared to the flow-by configuration due to the increased surface area and foam structure that improved mass transfer. The activated carbon (AC) material in suspension electrodes, which have an even larger surface area, decomposes all produced H2O2 and proves unsuitable for H2O2 synthesis. Although the mass transfer limitations seem to be alleviated on the microscale in the flow-through system, the high O2 consumption and H2O2 production cause challenges in maintaining the initially reached current density and Faradaic efficiency (FE). The decreasing ratio between the concentrations of the O2 and H2O2 in the bulk electrolyte will likely pose a challenge when proceeding to larger systems with longer electrodes. Tuning the reactor design and operating conditions will be essential in maximizing the FE and current density.
AB - Electrochemical oxygen reduction is a promising and sustainable alternative to the current industrial production method for hydrogen peroxide (H2O2), which is a green oxidant in many (emerging) applications in the chemical industry, water treatment, and fuel cells. Low solubility of O2 in water causes severe mass transfer limitations and loss of H2O2 selectivity at industrially relevant current densities, complicating the development of practical-scale electrochemical H2O2 synthesis systems. We tested a flow-by and flow-through configuration and suspension electrodes in an electrochemical flow cell to investigate the influence of electrode configuration and flow conditions on mass transfer and H2O2 production. We monitored the H2O2 production using Cu-tmpa (tmpa = tris(2-pyridylmethyl)amine) as a homogeneous copper-based catalyst in a pH-neutral phosphate buffer during 1 h of catalysis and estimated the limiting current density from CV scans. We achieve the highest H2O2 production and a 15-20 times higher geometrical limiting current density in the flow-through configuration compared to the flow-by configuration due to the increased surface area and foam structure that improved mass transfer. The activated carbon (AC) material in suspension electrodes, which have an even larger surface area, decomposes all produced H2O2 and proves unsuitable for H2O2 synthesis. Although the mass transfer limitations seem to be alleviated on the microscale in the flow-through system, the high O2 consumption and H2O2 production cause challenges in maintaining the initially reached current density and Faradaic efficiency (FE). The decreasing ratio between the concentrations of the O2 and H2O2 in the bulk electrolyte will likely pose a challenge when proceeding to larger systems with longer electrodes. Tuning the reactor design and operating conditions will be essential in maximizing the FE and current density.
KW - cell design
KW - electrolysis
KW - flow chemistry
KW - flow-through
KW - hydrogen peroxide
KW - mass transfer
KW - oxygen reduction reaction
UR - http://www.scopus.com/inward/record.url?scp=85201163645&partnerID=8YFLogxK
U2 - 10.1021/acssuschemeng.4c03919
DO - 10.1021/acssuschemeng.4c03919
M3 - Article
AN - SCOPUS:85201163645
SN - 2168-0485
VL - 12
SP - 12909
EP - 12918
JO - ACS Sustainable Chemistry and Engineering
JF - ACS Sustainable Chemistry and Engineering
IS - 34
ER -