2024 roadmap on magnetic microscopy techniques and their applications in materials science

D.V. Christensen*, U. Staub, T.R. Devidas, B. Kalisky, K.C. Nowack, J.L. Webb, U.L. Andersen, A. Huck, T. van der Sar, More Authors

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

1 Citation (Scopus)
2 Downloads (Pure)

Abstract

Considering the growing interest in magnetic materials for unconventional computing, data storage, and sensor applications, there is active research not only on material synthesis but also characterisation of their properties. In addition to structural and integral magnetic characterisations, imaging of magnetisation patterns, current distributions and magnetic fields at nano- and microscale is of major importance to understand the material responses and qualify them for specific applications. In this roadmap, we aim to cover a broad portfolio of techniques to perform nano- and microscale magnetic imaging using superconducting quantum interference devices, spin centre and Hall effect magnetometries, scanning probe microscopies, x-ray- and electron-based methods as well as magnetooptics and nanoscale magnetic resonance imaging. The roadmap is aimed as a single access point of information for experts in the field as well as the young generation of students outlining prospects of the development of magnetic imaging technologies for the upcoming decade with a focus on physics, materials science, and chemistry of planar, three-dimensional and geometrically curved objects of different material classes including two-dimensional materials, complex oxides, semi-metals, multiferroics, skyrmions, antiferromagnets, frustrated magnets, magnetic molecules/nanoparticles, ionic conductors, superconductors, spintronic and spinorbitronic materials.
Original languageEnglish
Article number032501
Number of pages82
JournalJPhys Materials
Volume7
Issue number3
DOIs
Publication statusPublished - 2024

Keywords

  • 2D materials
  • electron transport
  • magnetic microscopy
  • magnetism
  • multiferroics
  • spin dynamics
  • superconductors

Fingerprint

Dive into the research topics of '2024 roadmap on magnetic microscopy techniques and their applications in materials science'. Together they form a unique fingerprint.

Cite this