2D Dion–Jacobson CsPbI3 with Enhanced Interlayer Coupling for Stable and Efficient Photovoltaics

Yutian Lei, Guoqiang Peng, Haoxu Wang, Gang Wang, Siwei Yang, Qian Wang, Zhen Hua Li, Zhiwen Jin*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Inorganic 2D layered CsPbI3 is awaiting to overcome the phase instability of traditional 3D components. However, the most reported Ruddlesden–Popper (RP) phase 2D CsPbI3 leads to larger interlayer distance and weaker interlayer coupling since the existence of the van der Waals gap, which deteriorates the performance of the device and makes the improvement of stability unsatisfactory. Herein, this work resorts ethylenediamine cations (EDA2+) to construct a series of Dion–Jacobson (DJ) phase 2D CsPbI3 as (EDA)Csn−1PbnI3n+1 with van der Waals gap eliminated. Combining simulation calculations and experiments, it is found that the (EDA)Csn−1PbnI3n+1 has enhanced intermolecular forces to overcome the problem of insufficient crystallization power caused by large steric hindrance in the film assembly process compared to phenethylammonium-based RP phase analogues. In addition, profit from the reduced interlayer distance and stronger coupling, the rigidity of the structure is increased, and the annoying non-radiative recombination caused by structural fluctuations is alleviated. As a result, the 2D layered DJ phase CsPbI3-based solar cells deliver eminent performance than RP phase analogues, especially the 2D (EDA)(Cs)4Pb5I16 (n = 5) device exhibits a record PCE of 10.43% in this work, and significantly enhanced stability.

Original languageEnglish
Article number2201501
Number of pages10
JournalAdvanced Materials Interfaces
Volume9
Issue number31
DOIs
Publication statusPublished - 2022

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • 2D inorganic perovskite
  • Dion–Jacobson
  • efficiency and stability
  • layer coupling
  • Ruddlesden–Popper

Fingerprint

Dive into the research topics of '2D Dion–Jacobson CsPbI3 with Enhanced Interlayer Coupling for Stable and Efficient Photovoltaics'. Together they form a unique fingerprint.

Cite this