Damage mechanism characterization of ±35° and ±55° FW composite tubes using acoustic emission method

Sajad Alimirzaei, Mehdi Ahmadi Najafabadi*, Ali Nikbakht, L. Pahlavan

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

11 Citations (Scopus)
12 Downloads (Pure)

Abstract

The focus of this study is to investigate the mechanical properties, of ±35° and ±55° filament wound (FW) composite tubes under axial compression loading using the acoustic emission technique. For this purpose, material failure, crashworthiness characteristics, and the effect of each mechanism on the energy absorption capacity were studied using numerical and experimental approaches. Also, to identify and estimate the contribution percentage of damage mechanisms as well as how the damage grows in the specimens, the analysis of acoustic emission signals recorded during loading was performed. Digital image correlation was additionally used to capture displacement/strain contour maps. Finally, to analyze the effect of the winding pattern in the experimental test, the tubes were simulated using finite element analysis (FEA). For modeling of damage mechanisms, a 3D continuum damage model was used. The results of signal processing showed that by increasing the weaving angle of fibers from ±35° to ±55°, the separation of fibers from the matrix decreases, and the percentage of matrix crushing and fiber failure increases. The assessment of damage percentages showed that the reason for the large drop in force at ±55° compared to ±35° is the increase in matrix crushing. Furthermore, the failure behavior of FW tubes appeared to be dominated by local buckling, and the FEA effectively predicted the linear behavior and maximum load value of the composite tubes.

Original languageEnglish
Pages (from-to)1230-1253
JournalInternational Journal of Damage Mechanics
Volume31
Issue number8
DOIs
Publication statusPublished - 2022

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Acoustic emission
  • failure mechanisms
  • filament wound composite tubes
  • finite element simulation
  • quasi-static axial compression
  • user material (VUMAT) subroutine

Fingerprint

Dive into the research topics of 'Damage mechanism characterization of ±35° and ±55° FW composite tubes using acoustic emission method'. Together they form a unique fingerprint.

Cite this