Design & assessing the flood risk management paradigm shift: an interdisciplinary study of Vlissingen, the Netherlands

F.L. Hooimeijer, J.D. Bricker, Q. Ke, A. Bortolotti, Jasper van der Heuvel, Andres Diaz

Research output: Contribution to journalArticleScientificpeer-review

53 Downloads (Pure)

Abstract

Mean sea level rise (SLR) could increase up to 2m by 2100, which would see damage caused by coastal flooding in Europe increase from €1.25bn per annum currently to €961bn in just over 80 years. Urban areas situated along the North Sea coastline are particularly vulnerable to extreme sea level rise (a combination of SLR, tide and storm surges). The main goal of this study is to assess the paradigm shift in flood risk management from reducing probability of the flood event to reducing its consequences in the city of Vlissingen, in the Netherlands. Two spatial adaptation strategies are modeled and compared by using spatial, climatic, and socioeconomic projections for the year 2100: the “Vlissings Model” and the “Spuikom Model”. The Vlissings Model is about increased coastal protection through the heightening of existing grey infrastructure by 3 m, which includes the dike and buildings constructed on top of it. The Spuikom Model is accepting and rerouting overtopping water towards an existing former backshore water basin. The study brings forth an interdisciplinary "Design & Assess" framework that brings together design strategies with flood damage models and cost/benefit analyses to compare the effectiveness of two paradigms in dealing with extreme SLR. Results show that raising the dike would ensure full protection from extreme events against an initial investment and maintenance cost of €215 mil. Accepting and rerouting overtopping water would, on the contrary, reduce the impact of the flood to €8,6 million damage and less than a hundred affected inhabitants, without requiring the construction of major infrastructure but of a flood retention basin integrated to the new urban development. On the other hand, the comparison between the two strategies remains complex in quantitative terms given the different cost-benefit assessment models for such interventions.
Original languageEnglish
Pages (from-to)1-23
Number of pages23
JournalJournal of Urbanism
DOIs
Publication statusPublished - 2022

Keywords

  • Climate change, transport, technology, behaviour, car use, simulation, 2030
  • coastal floods
  • hydrodynamic modeling
  • spatial design

Fingerprint

Dive into the research topics of 'Design & assessing the flood risk management paradigm shift: an interdisciplinary study of Vlissingen, the Netherlands'. Together they form a unique fingerprint.

Cite this