Monitoring Co2 Injection into Basaltic Reservoir Formations at the HellisheiÐi Geothermal Site in Iceland: Laboratory Experiments

M.T.G. Janssen, D.S. Draganov, Jordan Bos, B. Farina, A. Barnhoorn, F. Poletto, G. Van Otten, K.H.A.A. Wolf, S. Durucan

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

13 Downloads (Pure)

Abstract

In the ACT Consortium funded project SUCCEED, researchers study the potential for monitoring the process of (re-)injecting produced and captured CO2 into the Hellisheiði geothermal field for the aid of enhancing geothermal deployment as well as permanently storing CO2 through mineralization. The Hellisheiði site provides an excellent opportunity for demonstrating an innovative seismic monitoring technique. Prior to conducting an active-source monitoring survey, we perform acoustic transmission measurements, on Hellisheiði rock samples, at field-representative stress conditions to obtain the seismic-response characteristics of all present formations. Subsequently, we use the acquired velocity data as an input for simulating 2D seismic surveys using a subsurface model representing the Hellisheiði site. Results show that the impact of increasing depth, i.e., stress, on seismic velocities is most apparent for the porous basalt layers due to their relatively large portion of open pore space, allowing for substantial compaction, increasing their bulk density and thus velocity. The poorly-consolidated hyaloclastites reveal a negligible effect of increasing depth on their velocity as the material already reached its maximum compaction at low stresses, thus at shallow depths. Comparison of synthetic and field geophone data reveal that the velocity profiles have to be updated for the shallow depths in the model.
Original languageEnglish
Title of host publicationEAGE Annual Conference & Exhibition 2022
PublisherEuropean Association of Geoscientists & Engineers
Pages1-5
Number of pages5
DOIs
Publication statusPublished - 2022

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'Monitoring Co2 Injection into Basaltic Reservoir Formations at the HellisheiÐi Geothermal Site in Iceland: Laboratory Experiments'. Together they form a unique fingerprint.

Cite this