Imaging resonant micro-cantilever movement with ultrafast scanning electron microscopy

Mathijs W.H. Garming, Pieter Kruit, Jacob P. Hoogenboom*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

34 Downloads (Pure)

Abstract

Here, we demonstrate ultrafast scanning electron microscopy (SEM) for making ultrafast movies of mechanical oscillators at resonance with nanoscale spatiotemporal resolution. Locking the laser excitation pulse sequence to the electron probe pulses allows for video framerates over 50 MHz, well above the detector bandwidth, while maintaining the electron beam resolution and depth of focus. The pulsed laser excitation is tuned to the oscillator resonance with a pulse frequency modulation scheme. We use an atomic force microscope cantilever as a model resonator, for which we show ultrafast real-space imaging of the first and even the 2 MHz second harmonic oscillation as well as verification of power and frequency response via the ultrafast movies series. We detect oscillation amplitudes as small as 20 nm and as large as 9 μm. Our implementation of ultrafast SEM for visualizing nanoscale oscillatory dynamics adds temporal resolution to the domain of SEM, providing new avenues for the characterization and development of devices based on micro- and nanoscale resonant motion.

Original languageEnglish
Article number093702
Number of pages7
JournalReview of Scientific Instruments
Volume93
Issue number9
DOIs
Publication statusPublished - 2022

Fingerprint

Dive into the research topics of 'Imaging resonant micro-cantilever movement with ultrafast scanning electron microscopy'. Together they form a unique fingerprint.

Cite this