Development of a Time–Height Profile Assimilation Technique for Large-Eddy Simulation

Dries Allaerts, Eliot Quon*, Caroline Draxl, Matthew Churchfield

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

13 Citations (Scopus)
79 Downloads (Pure)

Abstract

Mesoscale-to-microscale coupling (MMC) aims to address the limited scope of traditional large-eddy simulations by driving the microscale flow with information concerning large-scale weather patterns provided by mesoscale models. We present a new offline MMC technique for horizontally homogeneous microscale flow conditions, in which internal forcing terms are computed based on mesoscale time–height profiles of mean-flow quantities. The advantage of such an approach is that it can be used to drive a microscale simulation with either mesoscale or observational data, and that it does not rely on specific terms in the mesoscale budget equations, which are typically not part of the default output of a mesoscale solver. The performance of the proposed profile assimilation technique is assessed based on the simulation of a typical diurnal cycle over the Scaled Wind Farm Technology site in west Texas. Results indicate that simple data assimilation techniques lead to unphysically high levels of shear and turbulence caused by the algorithm’s inability to cope with inaccuracies in the mesoscale time–height profiles. Modifying the algorithm to account for vertical coherence in the mesoscale source terms gives the microscale solver a greater ability to correct the provided mesoscale time–height profiles, leading to improved predictions of shear and turbulence statistics. The resulting turbulence statistics are in good agreement with meteorological tower observations and simulation results obtained with state-of-the-art coupling techniques using mesoscale budget components.

Original languageEnglish
Pages (from-to)329-348
Number of pages20
JournalBoundary-Layer Meteorology
Volume176
Issue number3
DOIs
Publication statusPublished - 2020

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Data assimilation
  • Diurnal cycle
  • Large-eddy simulation
  • Mesoscale-to-microscale coupling
  • Weather Research and Forecasting model

Fingerprint

Dive into the research topics of 'Development of a Time–Height Profile Assimilation Technique for Large-Eddy Simulation'. Together they form a unique fingerprint.

Cite this