Thermo-mechanical numerical analyses in support of fire endurance assessment of ordinary soda-lime structural glass elements

Chiara Bedon*, Christian Louter

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

1 Citation (Scopus)
20 Downloads (Pure)

Abstract

Purpose: Glass material is largely used for load-bearing components in buildings. For this reason, standardized calculation methods can be used in support of safe structural design in common loading and boundary conditions. Differing from earlier literature efforts, the present study elaborates on the load-bearing capacity, failure time and fire endurance of ordinary glass elements under fire exposure and sustained mechanical loads, with evidence of major trends in terms of loading condition and cross-sectional layout. Traditional verification approaches for glass in cold conditions (i.e. stress peak check) and fire endurance of load-bearing members (i.e. deflection and deflection rate limits) are assessed based on parametric numerical simulations. Design/methodology/approach: The mechanical performance of structural glass elements in fire still represents an open challenge for design and vulnerability assessment. Often, special fire-resisting glass solutions are used for limited practical applications only, and ordinary soda-lime silica glass prevails in design applications for load-bearing members. Moreover, conventional recommendations and testing protocols in use for load-bearing members composed of traditional constructional materials are not already addressed for glass members. This paper elaborates on the fire endurance and failure detection methods for structural glass beams that are subjected to standard ISO time–temperature for fire exposure and in-plane bending mechanical loads. Fire endurance assessment methods are discussed with the support of Finite Element (FE) numerical analyses. Findings: Based on extended parametric FE analyses, multiple loading, geometrical and thermo-mechanical configurations are taken into account for the analysis of simple glass elements under in-plane bending setup and fire exposure. The comparative results show that – in most of cases – thermal effects due to fire exposure have major effects on the actual load-bearing capacity of these members. Moreover, the conventional stress peak verification approach needs specific elaborations, compared to traditional calculations carried out in cold conditions. Originality/value: The presented numerical results confirm that the fire endurance analysis of ordinary structural glass elements is a rather complex issue, due to combination of multiple aspects and influencing parameters. Besides, FE simulations can provide useful support for a local and global analysis of major degradation and damage phenomena, and thus support the definition of simple and realistic verification procedures for fire exposed glass members.

Original languageEnglish
Pages (from-to)522-546
Number of pages25
JournalJournal of Structural Fire Engineering
Volume14
Issue number4
DOIs
Publication statusPublished - 2023

Bibliographical note

Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Keywords

  • Failure time
  • Finite element (FE) numerical modelling
  • Fire endurance
  • Fire exposure
  • Laminated glass (LG)
  • Monolithic glass
  • Structural glass
  • Temperature-dependent material properties

Fingerprint

Dive into the research topics of 'Thermo-mechanical numerical analyses in support of fire endurance assessment of ordinary soda-lime structural glass elements'. Together they form a unique fingerprint.

Cite this