Abstract
This article presents a class-D amplifier (CDA) with high dynamic range (DR). To eliminate the typically dominant noise contribution of a resistive feedback network, the input and feedback signals are chopped and applied to a capacitive feedback network. However, this leads to high-voltage (HV) transients at the input of the loop filter, which, due to timing and impedance mismatch in the chopped feedback network, could degrade linearity and even overstress low-voltage (LV) core devices. Robust processing of the HV chopped feedback signal is guaranteed with chopper timing skew correction, chopper impedance matching, and deadbanding. The prototype, implemented in a 180-nm bipolar-CMOS-DMOS (BCD) process, achieves 121.4 dB of DR, 5.9 dB higher than state-of-the-art closed-loop CDAs, and 8-μVRMS output-referred noise (A-weighted). It also achieves a peak total harmonic distortion (THD) + N of -109.8 dB and a peak efficiency of 93%/88% while driving 15 W/26 W into an 8-4-Ω load.
Original language | English |
---|---|
Pages (from-to) | 3736-3745 |
Number of pages | 10 |
Journal | IEEE Journal of Solid-State Circuits |
Volume | 57 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2022 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Audio power amplifier
- capacitively coupled chopper amplifier
- class-D amplifier (CDA)
- dynamic range (DR)
- noise