Abstract
Successful implementation of integer ambiguity resolution enabled precise point positioning (aka PPP-RTK) algorithms is inextricably linked to the ability of a user to perform near real-time positioning by quickly and reliably resolving the integer carrier-phase ambiguities. In the PPP-RTK technique, a major barrier to successful ambiguity resolution is the unmodelled impact of the ionosphere. We present a 4D ionospheric tomographic model that computes in real time the ionospheric electron density as a linear combination of basis functions, namely B-splines. The results show that when the ionospheric estimates are provided as atmospheric corrections for a PPP-RTK end-user, the time to fix its horizontal position below 10 cm is around 20 epochs (the sample rate is 30 s) at the 90 % of the cumulative distribution function (CDF), as opposed to the time it takes when no external corrections are provided, which is around 80 epochs at 90 % of the CDF.
Original language | English |
---|---|
Pages (from-to) | 1673-1683 |
Number of pages | 11 |
Journal | Journal of Geodesy |
Volume | 93 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2019 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Keywords
- B-splines
- GNSS
- Ionosphere
- PPP-RTK
- Tomography