A benchmark approach and dataset for large-scale lane mapping from MLS point clouds

Xiaoxin Mi, Zhen Dong, Zhipeng Cao, Bisheng Yang, Zhen Cao, Chao Zheng*, Jantien Stoter, Liangliang Nan

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

20 Downloads (Pure)

Abstract

Accurate lane maps with semantics are crucial for various applications, such as high-definition maps (HD Maps), intelligent transportation systems (ITS), and digital twins. Manual annotation of lanes is labor-intensive and costly, prompting researchers to explore automatic lane extraction methods. This paper presents an end-to-end large-scale lane mapping method that considers both lane geometry and semantics. This study represents lane markings as polylines with uniformly sampled points and associated semantics, allowing for adaptation to varying lane shapes. Additionally, we propose an end-to-end network to extract lane polylines from mobile laser scanning (MLS) data, enabling the inference of vectorized lane instances without complex post-processing. The network consists of three components: a feature encoder, a column proposal generator, and a lane information decoder. The feature encoder encodes textual and structural information of lane markings to enhance the method’s robustness to data imperfections, such as varying lane intensity, uneven point density, and occlusion-induced incomplete data. The column proposal generator generates regions of interest for the subsequent decoder. Leveraging the embedded multi-scale features from the feature encoder, the lane decoder effectively predicts lane polylines and their associated semantics without requiring step-by-step conditional inference. Comprehensive experiments conducted on three lane datasets have demonstrated the performance of the proposed method, even in the presence of incomplete data and complex lane topology. Furthermore, the datasets used in this work, including source ground points, generated bird’s eye view (BEV) images, and annotations, will be publicly available with the publication of the paper.
Original languageEnglish
Article number104139
Number of pages13
JournalInternational Journal of Applied Earth Observation and Geoinformation
Volume133
DOIs
Publication statusPublished - 2024

Keywords

  • End-to-end
  • Hierarchical attention
  • Large-scale lane mapping
  • Neural network
  • Point clouds

Fingerprint

Dive into the research topics of 'A benchmark approach and dataset for large-scale lane mapping from MLS point clouds'. Together they form a unique fingerprint.

Cite this