A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm

Research output: Contribution to journalArticleScientificpeer-review

2 Citations (Scopus)
108 Downloads (Pure)

Abstract

This paper presents a bi‐level model to optimize automated‐vehicle‐friendly subnetworks in urban road networks and an efficient algorithm to solve the model, which is relevant for the transition period with vehicles of different automation levels. We formulate the problem as a network design problem, define solution requirements, present an effective solution method that meets those requirements, and compare its performance with two other solution algorithms. Numerical examples for network of Delft are presented to demonstrate the concept and solution algorithm performances. Results indicate that our proposed solution outperforms competing ones in all criteria considered. Furthermore, our findings show that the optimal configuration of these subnetworks depends on the level of demand; lower penetration rates of automated vehicles call for less dense subnetworks, and thereby less investments. Nonetheless, a large proportion of benefits are already achievable with low‐density subnetworks. Denser subnetworks can deliver higher benefits with higher penetration rates.
Original languageEnglish
Pages (from-to)80-96
Number of pages17
JournalComputer-Aided Civil and Infrastructure Engineering
Volume35
Issue number1
DOIs
Publication statusPublished - Jan 2020

Fingerprint Dive into the research topics of 'A bi‐level model to optimize road networks for a mixture of manual and automated driving: An evolutionary local search algorithm'. Together they form a unique fingerprint.

  • Cite this