A Cascaded Structure for Generalized Graph Filters

Mario Coutino, Geert Leus

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
16 Downloads (Pure)


One of the main challenges of graph filters is the stability of their design. While classical graph filters allow for a stable design using optimal polynomial approximation theory, generalized graph filters tend to suffer from the ill-conditioning of the involved system matrix. This issue, accentuated for increasing graph filter orders, naturally leads to very large (small) filter coefficients or error saturation, casting a shadow on the benefits of these richer graph filter structures. In addition to this, data-driven design/learning of graph filters with large filter orders, even in the case of classical graph filters, suffers from the eigenvalue spread of the input data covariance matrix and mode coupling, leading to convergence-related issues as the ones observed when identifying time-domain filters with large orders. To alleviate these conditioning and convergence problems, and to reduce the overall design complexity, in this work, we propose a cascaded implementation of generalized graph filters and an efficient algorithm for designing the graph filter coefficients in both model- and data-driven settings. Further, we establish the connections of this implementation with so-called graph convolutional neural networks and demonstrate the performance of the proposed structure in different network applications. By the proposed approach, further error reduction and better design stability are achieved.

Original languageEnglish
Article number9496112
Pages (from-to)3499-3513
Number of pages15
JournalIEEE Transactions on Signal Processing
Publication statusPublished - 2022

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.


  • cascaded filters
  • distributed optimization
  • graph filtering
  • graph signal processing
  • signal processing on graphs


Dive into the research topics of 'A Cascaded Structure for Generalized Graph Filters'. Together they form a unique fingerprint.

Cite this