A classification point-of-view about conditional Kendall's tau

Alexis Derumigny*, Jean David Fermanian

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

5 Citations (Scopus)


It is shown how the problem of estimating conditional Kendall's tau can be rewritten as a classification task. Conditional Kendall's tau is a conditional dependence parameter that is a characteristic of a given pair of random variables. The goal is to predict whether the pair is concordant (value of 1) or discordant (value of −1) conditionally on some covariates. The consistency and the asymptotic normality of a family of penalized approximate maximum likelihood estimators is proven, including the equivalent of the logit and probit regressions in our framework. Specific algorithms are detailed, adapting usual machine learning techniques, including nearest neighbors, decision trees, random forests and neural networks, to the setting of the estimation of conditional Kendall's tau. Finite sample properties of these estimators and their sensitivities to each component of the data-generating process are assessed in a simulation study. Finally, all these estimators are applied to a dataset of European stock indices.

Original languageEnglish
Pages (from-to)70-94
Number of pages25
JournalComputational Statistics and Data Analysis
Publication statusPublished - Jul 2019
Externally publishedYes


  • Classification task
  • Conditional dependence measure
  • Conditional Kendall's tau
  • Machine learning
  • Stock indices


Dive into the research topics of 'A classification point-of-view about conditional Kendall's tau'. Together they form a unique fingerprint.

Cite this