TY - JOUR
T1 - A CMOS Readout Circuit for Resistive Transducers Based on Algorithmic Resistance and Power Measurement
AU - Cai, Zeyu
AU - Rueda Guerrero, Luis E.
AU - Louwerse, Alexander Mattheus Robert
AU - Suy, Hilco
AU - van Veldhoven, Robert
AU - Makinwa, Kofi A.A.
AU - Pertijs, Michiel A.P.
N1 - Accepted Author Manuscript
PY - 2017
Y1 - 2017
N2 - This paper reports a readout circuit capable of accurately measuring not only the resistance of a resistive transducer, but also the power dissipated in it, which is a critical parameter in thermal flow sensors or thermal-conductivity sensors. A front-end circuit, integrated in a standard CMOS technology, sets the voltage drop across the transducer, and senses the resulting current via an on-chip reference resistor. The voltages across the transducer and the reference resistor are digitized by a time-multiplexed high-resolution analog-todigital converter (ADC) and post-processed to calculate resistance and power dissipation. To obtain accurate resistance and power readings, a voltage reference and a temperature-compensated reference resistor are required. An accurate voltage reference is constructed algorithmically, without relying on precision analog signal processing, by using the ADC to successively digitize the base-emitter voltages of an on-chip bipolar transistor biased at several different current levels, and then combining the results to obtain the equivalent of a precision curvature-corrected bandgap reference with a temperature coefficient of 18 ppm/°C, which is close to the state-of-the-art. We show that the same ADC readings can be used to determine die temperature, with an absolute inaccuracy of ±0.25 °C (5 samples, min-max) after a 1-point trim. This information is used to compensate for the temperature dependence of the on-chip polysilicon reference resistor, effectively providing a temperature-compensated resistance reference. With this approach, the resistance and power dissipation of a 100 Ω transducer have been measured with an inaccuracy of less than ±0.55 Ω and ±0.8%, respectively, from -40 °C to 125 °C.
AB - This paper reports a readout circuit capable of accurately measuring not only the resistance of a resistive transducer, but also the power dissipated in it, which is a critical parameter in thermal flow sensors or thermal-conductivity sensors. A front-end circuit, integrated in a standard CMOS technology, sets the voltage drop across the transducer, and senses the resulting current via an on-chip reference resistor. The voltages across the transducer and the reference resistor are digitized by a time-multiplexed high-resolution analog-todigital converter (ADC) and post-processed to calculate resistance and power dissipation. To obtain accurate resistance and power readings, a voltage reference and a temperature-compensated reference resistor are required. An accurate voltage reference is constructed algorithmically, without relying on precision analog signal processing, by using the ADC to successively digitize the base-emitter voltages of an on-chip bipolar transistor biased at several different current levels, and then combining the results to obtain the equivalent of a precision curvature-corrected bandgap reference with a temperature coefficient of 18 ppm/°C, which is close to the state-of-the-art. We show that the same ADC readings can be used to determine die temperature, with an absolute inaccuracy of ±0.25 °C (5 samples, min-max) after a 1-point trim. This information is used to compensate for the temperature dependence of the on-chip polysilicon reference resistor, effectively providing a temperature-compensated resistance reference. With this approach, the resistance and power dissipation of a 100 Ω transducer have been measured with an inaccuracy of less than ±0.55 Ω and ±0.8%, respectively, from -40 °C to 125 °C.
UR - http://resolver.tudelft.nl/uuid:3d665226-0e79-4a0e-91d6-f3e7c0baaf3e
U2 - 10.1109/jsen.2017.2764161
DO - 10.1109/jsen.2017.2764161
M3 - Article
VL - 17
SP - 7917
EP - 7927
JO - IEEE Sensors Journal
JF - IEEE Sensors Journal
SN - 1530-437X
IS - 23
ER -