A comparative study for H2–CH4 mixture wettability in sandstone porous rocks relevant to underground hydrogen storage

Leila Hashemi*, Maartje Boon, Wuis Glerum, Rouhi Farajzadeh, Hadi Hajibeygi

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

36 Citations (Scopus)
177 Downloads (Pure)

Abstract

Characterizing the wettability of hydrogen (H2)–methane (CH4) mixtures in subsurface reservoirs is the first step towards understanding containment and transport properties for underground hydrogen storage (UHS). In this study, we investigate the static contact angles of H2–CH4 mixtures, in contact with brine and Bentheimer sandstone rock using a captive-bubble cell device at different pressures, temperatures and brine salinity values. It is found that, under the studied conditions, H2 and CH4 show comparable wettability behaviour with contact angles ranging between [25°–45°]; and consequently their mixtures behave similar to the pure gas systems, independent of composition, pressure, temperature and salinity. For the system at rest, the acting buoyancy and surface forces allow for theoretical sensitivity analysis for the captive-bubble cell approach to characterize the wettability. Moreover, it is theoretically validated that under similar Bond numbers and similar bubble sizes, the contact angles of H2 and CH4 bubbles and their mixtures are indeed comparable. Consequently, in large-scale subsurface storage systems where buoyancy and capillary are the main acting forces, H2, CH4 and their mixtures will have similar wettability characteristics.

Original languageEnglish
Article number104165
Number of pages12
JournalAdvances in Water Resources
Volume163
DOIs
Publication statusPublished - 2022

Keywords

  • Captive-bubble cell
  • Contact angle
  • H-CH mixtures
  • Underground hydrogen storage
  • Wettability

Fingerprint

Dive into the research topics of 'A comparative study for H2–CH4 mixture wettability in sandstone porous rocks relevant to underground hydrogen storage'. Together they form a unique fingerprint.

Cite this