A comprehensive analysis of fatigue in wood and wood products

Changxi Yang*, Mostafa Abdelrahman, Ani Khaloian-Sarnaghi, Jan Willem van de Kuilen

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

29 Downloads (Pure)

Abstract

Fatigue failures pose significant challenges across various engineering disciplines. Wood, due to its low carbon emissions and high strength-to-weight ratio, has been gaining attention in engineering applications. The fatigue behavior of wood is complex due to its heterogeneous, anisotropic, and viscoelastic nature. This research explores essential insights into the fatigue behavior of wood, with a focus on S–N curves, stress–strain behavior, and failure mechanisms. Due to often varying failure criteria and test settings, direct comparison of S–N curves across different studies can be challenging and inconclusive. A closer look shows that wood in fatigue shows both irreversible and recoverable strain components that are delayed. However, there have been conflicting reports about residual stiffness changes under fatigue loading. Theoretical fatigue life models based on S–N curves or duration of load theory have shown limited applicability. Efforts to develop progressive damage model based on stress–strain behaviors have been challenging and largely unsuccessful due to the lack or inconsistency of data. Understanding the microstructural failure mechanism is crucial in order to build a more trustworthy fatigue modeling technique. Further work is suggested to monitor the microstructural deterioration during high-cycle fatigue loading.
Original languageEnglish
Article number108807
Number of pages20
JournalInternational Journal of Fatigue
Volume194
DOIs
Publication statusPublished - 2025

Keywords

  • Failure mechanism
  • Fatigue
  • S–N curve
  • Viscoelasticity
  • Wood

Fingerprint

Dive into the research topics of 'A comprehensive analysis of fatigue in wood and wood products'. Together they form a unique fingerprint.

Cite this