Abstract
Differential mechanisms are remarkable mechanical elements that are widely utilized in various systems; nevertheless, conventional differential mechanisms are heavy and difficult to use in applications with limited design space. This paper presents a curved differential mechanism that utilizes a lightweight, compliant structure. This mechanism acquires its differential characteristic by having a high rotational stiffness when the mechanism is symmetrically actuated on two sides, while having a low rotational stiffness when actuated only on one side. To make the mechanism neutrally stable, the intrinsic elastic strain energy required for deformation of the compliant differential is compensated for by the reintroduction of potential energy, which is provided by two preloaded springs. The rotational stiffness of the one-sided actuation of the compliant differential mechanism around the neutral position is hypothesized to be adjustable by changing the preload of the springs. The stiffness can be positive, zero, or negative, indicating that the mechanism can be neutral or bistable. This hypothesis is investigated using a simulated model in Ansys Parametric Design Language (APDL) using optimized parameters to achieve the desired stiffness for the mechanism. The simulated model is validated using an experimental setup for both the one-sided and symmetrical actuation stages. The experimental results showed a high correlation with the simulation results. The mechanism with optimized dimensions and preload demonstrated neutral stability over a 16deg range. Bistability was discovered for preloads greater than the optimized preload. At θ = 0, a linear relationship was discovered between the spring preload and the rotational stiffness of the mechanism. Furthermore, an output/input kinematic performance of 0.97 was found for the simulated results and 0.95 for the experimental results.
Original language | English |
---|---|
Article number | 011003 |
Number of pages | 8 |
Journal | Journal of Mechanisms and Robotics |
Volume | 16 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- compliant mechanisms
- differential mechanism
- neutral stability
- zero stiffness
- wearable devices