A Data-drive Approach for Robust Cockpit Crew Training Scheduling

Joey Van Kempen, Bruno F. Santos*, Lennart Scherp

*Corresponding author for this work

Research output: Contribution to journalConference articleScientificpeer-review

65 Downloads (Pure)


This work addresses the cockpit crew training scheduling problem. The objective is to produce a robust cockpit crew training schedule, including the assignment of trainees, instructors and simulators. To attain this objective, we propose a scheduling framework composed of four modules: a Training Scheduling & Assignment Model (TS&AM), a Disruption Generator (DG), a Rule-Based Recovery (RBR) algorithm, and a Neural Network (NN). The TS&AM is an integer programming model that integrates the scheduling of courses and the assignment of resources. The output roster serves as input for a data-driven DG based on Monte-Carlo Simulation. The disruptions are then solved using the RBR algorithm. Finally, The NN feedback algorithm learns the recovery costs experienced in the disruption impact simulator and updates these costs in the TS&AM to generate more robust rosters. The proposed modelling framework was calibrated, tested, and demonstrated in a simulation environment developed using four years of historical crew training data from a major European airline. The experiment showed that our approach outperformed the roster produced by the airline. The approach proposed produces rosters that reduce recovery costs by 21 percent, while still decreasing total training costs by 3 percent.

Original languageEnglish
Pages (from-to)424-431
Number of pages8
JournalTransportation Research Procedia
Publication statusPublished - 2022
Event24th Euro Working Group on Transportation Meeting, EWGT 2021 - Aveiro, Portugal
Duration: 8 Sep 202110 Sep 2021


  • crew training schedule
  • integer linear programming
  • neural network
  • robust scheduling


Dive into the research topics of 'A Data-drive Approach for Robust Cockpit Crew Training Scheduling'. Together they form a unique fingerprint.

Cite this