A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows

Research output: Contribution to journalArticleScientificpeer-review

63 Citations (Scopus)

Abstract

We present an efficient solver for massively-parallel direct numerical simulations of incompressible turbulent flows. The method uses a second-order, finite-volume pressure-correction scheme, where the pressure Poisson equation is solved with the method of eigenfunction expansions. This approach allows for very efficient FFT-based solvers in problems with different combinations of homogeneous pressure boundary conditions. Our algorithm explores all combinations of pressure boundary conditions valid for such a solver, in a single, general framework. The method is implemented in a 2D pencil-like domain decomposition, which enables efficient massively-parallel simulations. The implementation was validated against different canonical flows, and its computational performance was examined. Excellent strong scaling performance up to 104 cores is demonstrated for a domain with 109 spatial degrees of freedom, corresponding to a very small wall-clock time/time step. The resulting tool, CaNS, has been made freely available and open-source.

Original languageEnglish
Pages (from-to)1853-1862
JournalComputers and Mathematics with Applications
Volume76
Issue number8
DOIs
Publication statusPublished - 2018
Externally publishedYes

Keywords

  • Direct numerical simulations
  • Fast Poisson solver
  • High-performance computing
  • Turbulent flows

Fingerprint

Dive into the research topics of 'A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows'. Together they form a unique fingerprint.

Cite this