Abstract
Fully Homomorphic Encryption (FHE) has made it possible to perform addition and multiplication operations on encrypted data. Using FHE in control thus has the advantage that control effort for a plant can be calculated remotely without ever decrypting the exchanged information. FHE in its current form is however not practically applicable for real-time control as its computational load is very high compared to traditional encryption methods. In this paper a reformulation of the Gentry FHE scheme is proposed and applied on an FPGA to solve this problem. It is shown that the resulting FHE scheme can be implemented for real-time stabilization of an inverted double pendulum using discrete time control.
Original language | English |
---|---|
Title of host publication | Proceedings of the IEEE 61st Conference on Decision and Control (CDC 2022) |
Publisher | IEEE |
Pages | 2911-2916 |
ISBN (Print) | 978-1-6654-6761-2 |
DOIs | |
Publication status | Published - 2022 |
Event | IEEE 61st Conference on Decision and Control (CDC 2022) - Cancún, Mexico Duration: 6 Dec 2022 → 9 Dec 2022 |
Conference
Conference | IEEE 61st Conference on Decision and Control (CDC 2022) |
---|---|
Country/Territory | Mexico |
City | Cancún |
Period | 6/12/22 → 9/12/22 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Ciphers
- Dams
- Control systems
- Real-time systems
- Large-scale systems
- Homomorphic encryption
- Computational complexity