TY - JOUR
T1 - A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel
AU - Dubey, Subodh
AU - Bansal, Prateek
AU - Daziano, Ricardo A.
AU - Guerra, Erick
PY - 2020/3/1
Y1 - 2020/3/1
N2 - In multinomial response models, idiosyncratic variations in the indirect utility are generally modeled using Gumbel or normal distributions. This study makes a strong case to substitute these thin-tailed distributions with a t-distribution. First, we demonstrate that a model with a t-distributed error kernel better estimates and predicts preferences, especially in class-imbalanced datasets. Our proposed specification also implicitly accounts for decision-uncertainty behavior, i.e. the degree of certainty that decision-makers hold in their choices relative to the variation in the indirect utility of any alternative. Second – after applying a t-distributed error kernel in a multinomial response model for the first time – we extend this specification to a generalized continuous-multinomial (GCM) model and derive its full-information maximum likelihood estimation procedure. The likelihood involves an open-form expression of the cumulative density function of the multivariate t-distribution, which we propose to compute using a combination of the composite marginal likelihood method and the separation-of-variables approach. Third, we establish finite sample properties of the GCM model with a t-distributed error kernel (GCM-t) and highlight its superiority over the GCM model with a normally-distributed error kernel (GCM-N) in a Monte Carlo study. Finally, we compare GCM-t and GCM-N in an empirical setting related to preferences for electric vehicles (EVs). We observe that accounting for decision-uncertainty behavior in GCM-t results in lower elasticity estimates and a higher willingness to pay for improving the EV attributes than those of the GCM-N model. These differences are relevant in making policies to expedite the adoption of EVs.
AB - In multinomial response models, idiosyncratic variations in the indirect utility are generally modeled using Gumbel or normal distributions. This study makes a strong case to substitute these thin-tailed distributions with a t-distribution. First, we demonstrate that a model with a t-distributed error kernel better estimates and predicts preferences, especially in class-imbalanced datasets. Our proposed specification also implicitly accounts for decision-uncertainty behavior, i.e. the degree of certainty that decision-makers hold in their choices relative to the variation in the indirect utility of any alternative. Second – after applying a t-distributed error kernel in a multinomial response model for the first time – we extend this specification to a generalized continuous-multinomial (GCM) model and derive its full-information maximum likelihood estimation procedure. The likelihood involves an open-form expression of the cumulative density function of the multivariate t-distribution, which we propose to compute using a combination of the composite marginal likelihood method and the separation-of-variables approach. Third, we establish finite sample properties of the GCM model with a t-distributed error kernel (GCM-t) and highlight its superiority over the GCM model with a normally-distributed error kernel (GCM-N) in a Monte Carlo study. Finally, we compare GCM-t and GCM-N in an empirical setting related to preferences for electric vehicles (EVs). We observe that accounting for decision-uncertainty behavior in GCM-t results in lower elasticity estimates and a higher willingness to pay for improving the EV attributes than those of the GCM-N model. These differences are relevant in making policies to expedite the adoption of EVs.
UR - http://www.scopus.com/inward/record.url?scp=85077942301&partnerID=8YFLogxK
U2 - 10.1016/j.trb.2019.12.007
DO - 10.1016/j.trb.2019.12.007
M3 - Article
AN - SCOPUS:85077942301
VL - 133
SP - 114
EP - 141
JO - Transportation Research. Part B: Methodological
JF - Transportation Research. Part B: Methodological
SN - 0191-2615
ER -