Abstract
Tremendous efforts have been put into the study of structural integrity and the understanding of failure mechanisms in composites. Geometric non-linearity, receiving few attention in coupon-level simulations, can play an important role in the design and analysis of larger structures. This paper aims at extending the recently-developed Floating Node Method for damage analysis of laminated composites subjected to large deformations. The kinematics of strong discontinuities including interfacial delamination and matrix cracks are explicitly described in a geometrically nonlinear framework. Interactions between these two kinds of failure patterns are enabled through enriched elements equipped with floating nodes. To verify this proposed method, buckling-induced delamination and low-velocity impact damage are modelled, the results of which show good agreement with results from literature.
Original language | English |
---|---|
Title of host publication | ECCM 2018 - 18th European Conference on Composite Materials |
Publisher | Applied Mechanics Laboratory |
Number of pages | 7 |
ISBN (Electronic) | 9781510896932 |
Publication status | Published - 2020 |
Event | ECCM18: 18th European Conference on Composite Materials - Athens, Greece Duration: 24 Jun 2018 → 28 Jun 2018 Conference number: 18 http://www.eccm18.org/ |
Publication series
Name | ECCM 2018 - 18th European Conference on Composite Materials |
---|
Conference
Conference | ECCM18: 18th European Conference on Composite Materials |
---|---|
Abbreviated title | ECCM18 |
Country/Territory | Greece |
City | Athens |
Period | 24/06/18 → 28/06/18 |
Internet address |
Keywords
- Delamination
- Discrete crack methods
- Large displacement
- Matrix cracking