A high-performance Li-ion anode from direct deposition of Si nanoparticles

Yaolin Xu, Ellie Swaans, Sibo Chen, Shibabrata Basak, Peter-Paul Harks, Bo Peng, Henny W. Zandbergen, Dana M. Borsa, Fokko M. Mulder

Research output: Contribution to journalArticleScientificpeer-review

43 Citations (Scopus)


Nanostructured silicon has been intensively investigated as a high capacity Li-ion battery anode. However, the commercial introduction still requires advances in the scalable synthesis of sophisticated Si nanomaterials and electrodes. Moreover, the electrode degradation due to volume changes upon de-/lithiation, low areal electrode capacity, and application of large amounts of advanced conductive additives are some of the challenging aspects. Here we report a Si electrode, prepared from direct deposition of Si nanoparticles on a current collector without any binder or conducting additives, that addresses all of the above issues. It exhibits an excellent cycling stability and a high capacity retention taking advantages of what appears to be a locally protective, yolk-shell reminiscent, solid electrolyte interphase (SEI) formation. Cycling an electrode with a Si nanoparticle loading of 2.2 mg cm−2 achieved an unrivalled areal capacity retention, specifically, up to 4.2 mAh cm−2 and ~ 1.5 mAh cm−2 at 0.8 mA cm−2 and 1.6 mA cm−2, respectively.

Original languageEnglish
Pages (from-to)477-485
Number of pages9
JournalNano Energy
Publication statusPublished - 1 Aug 2017


  • Direct deposition
  • Li ion battery
  • One-off SEI formation
  • Si nanoparticles


Dive into the research topics of 'A high-performance Li-ion anode from direct deposition of Si nanoparticles'. Together they form a unique fingerprint.

Cite this