A Highly Digital 2210μm2Resistor-Based Temperature Sensor with a 1-Point Trimmed Inaccuracy of ± 1.3 ° C (3 σ) from -55 ° C to 125 ° C in 65nm CMOS

Jan A. Angevare, Youngcheol Chae, Kofi A.A. Makinwa

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

5 Citations (Scopus)
30 Downloads (Pure)

Abstract

Microprocessors and SoCs employ multiple temperature sensors to prevent overheating and ensure reliable operation. Such sensors should be small (<10,000μm2) to monitor local hot-spots in dense layouts. They should also be moderately accurate (1°C) up to high temperatures (≥125°C), so that the system throttling temperature can be set as close as possible to the maximum allowable die temperature. Furthermore, they should be fast (1kS/s) and consume low power (tens of μW).

Original languageEnglish
Title of host publication2021 IEEE International Solid-State Circuits Conference, ISSCC 2021 - Digest of Technical Papers
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages76-78
Number of pages3
ISBN (Electronic)9781728195490
DOIs
Publication statusPublished - 2021
Event2021 IEEE International Solid-State Circuits Conference, ISSCC 2021 - San Francisco, United States
Duration: 13 Feb 202122 Feb 2021

Publication series

NameDigest of Technical Papers - IEEE International Solid-State Circuits Conference
Volume64
ISSN (Print)0193-6530

Conference

Conference2021 IEEE International Solid-State Circuits Conference, ISSCC 2021
Country/TerritoryUnited States
CitySan Francisco
Period13/02/2122/02/21

Bibliographical note

Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care
Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.

Fingerprint

Dive into the research topics of 'A Highly Digital 2210μm2Resistor-Based Temperature Sensor with a 1-Point Trimmed Inaccuracy of ± 1.3 ° C (3 σ) from -55 ° C to 125 ° C in 65nm CMOS'. Together they form a unique fingerprint.

Cite this