TY - JOUR
T1 - A hybrid Convolutional Autoencoder training algorithm for unsupervised bearing health indicator construction
AU - Milani, Ali Eftekhari
AU - Zappalá, Donatella
AU - Watson, Simon J.
PY - 2025
Y1 - 2025
N2 - Conventional Deep Learning (DL) methods for bearing health indicator (HI) adopt supervised approaches, requiring expert knowledge of the component degradation trend. Since bearings experience various failure modes, assuming a particular degradation trend for HI is suboptimal. Unsupervised DL methods are scarce in this domain. They generally maximise the HI monotonicity built in the middle layer of an Autoencoder (AE) trained to reconstruct the run-to-failure signals. The backpropagation (BP) training algorithm is unable to perform this maximisation since the monotonicity of HI subsections corresponding to input sample batches does not guarantee the monotonicity of the whole HI. Therefore, existing methods achieve this by searching AE hyperparameters so that its BP training to minimise the reconstruction error also leads to a highly monotonic HI in its middle layer. This is done using expensive search algorithms where the AE is trained numerous times using various hyperparameter settings, rendering them impractical for large datasets. To address this limitation, a small Convolutional Autoencoder (CAE) architecture and a hybrid training algorithm combining Particle Swarm Optimisation and BP are proposed in this work to enable simultaneous maximisation of the HI monotonicity and minimisation of the reconstruction error. As a result, the HI is built by training the CAE only once. The results from three case studies demonstrate this method’s lower computational burden compared to other unsupervised DL methods. Furthermore, the CAE-based HIs outperform the indicators built by equivalent and significantly larger models trained with a BP-based supervised approach, leading to 85% lower remaining useful life prediction errors.
AB - Conventional Deep Learning (DL) methods for bearing health indicator (HI) adopt supervised approaches, requiring expert knowledge of the component degradation trend. Since bearings experience various failure modes, assuming a particular degradation trend for HI is suboptimal. Unsupervised DL methods are scarce in this domain. They generally maximise the HI monotonicity built in the middle layer of an Autoencoder (AE) trained to reconstruct the run-to-failure signals. The backpropagation (BP) training algorithm is unable to perform this maximisation since the monotonicity of HI subsections corresponding to input sample batches does not guarantee the monotonicity of the whole HI. Therefore, existing methods achieve this by searching AE hyperparameters so that its BP training to minimise the reconstruction error also leads to a highly monotonic HI in its middle layer. This is done using expensive search algorithms where the AE is trained numerous times using various hyperparameter settings, rendering them impractical for large datasets. To address this limitation, a small Convolutional Autoencoder (CAE) architecture and a hybrid training algorithm combining Particle Swarm Optimisation and BP are proposed in this work to enable simultaneous maximisation of the HI monotonicity and minimisation of the reconstruction error. As a result, the HI is built by training the CAE only once. The results from three case studies demonstrate this method’s lower computational burden compared to other unsupervised DL methods. Furthermore, the CAE-based HIs outperform the indicators built by equivalent and significantly larger models trained with a BP-based supervised approach, leading to 85% lower remaining useful life prediction errors.
KW - Bearing
KW - Convolutional Autoencoder
KW - Health indicator
KW - Particle Swarm Optimisation
KW - Prognostics
KW - Remaining useful life prediction
UR - http://www.scopus.com/inward/record.url?scp=85207347770&partnerID=8YFLogxK
U2 - 10.1016/j.engappai.2024.109477
DO - 10.1016/j.engappai.2024.109477
M3 - Article
AN - SCOPUS:85207347770
SN - 0952-1976
VL - 139
JO - Engineering Applications of Artificial Intelligence
JF - Engineering Applications of Artificial Intelligence
M1 - 109477
ER -