Abstract
Laparoscopic hysterectomy is a procedure that involves the removal of the uterus through an abdominal keyhole incision. Morcellators have been specifically designed for this task, but their use has been discouraged by the food and drug administration (FDA) since November 2014 because of risks of cancerous tissue spread. The use of laparoscopic bags to catch and contain tissue debris has been suggested, but this does not solve the root cause of tissue spread. The fundamental problem lies in the tendency of the tissue mass outside the morcellation tube to rotate along with the cutting blade, causing tissue to be spread through the abdomen. This paper presents a bio-inspired concept that constrains the tissue mass in the advent of its rotation in order to improve the overall morcellation efficacy and reduce tissue spread. A design of gripping teeth integrated into the inner diameter of the morcellation tube is proposed. Various tooth geometries were developed and evaluated through an iterative process in order to maximize the gripping forces of these teeth. The maximum gripping force was determined through the measurement of force-displacement curves during the gripping of gelatin and bovine tissue samples. The results indicate that a tooth ring with a diameter of 15mm can provide a torque resistance of 1.9 Ncm. Finally, a full morcellation instrument concept design is provided.
Original language | English |
---|---|
Article number | 011005 |
Number of pages | 13 |
Journal | Journal of Medical Devices |
Volume | 11 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2017 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Laparoscopic devices
- Minimally invasive surgery
- Morcellation
- Tissue constraining
- Tissue spread