A Markovian decision model of adaptive cancer treatment and quality of life

Péter Bayer*, Joel S. Brown, Johan Dubbeldam, Mark Broom

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This paper develops and analyzes a Markov chain model for the treatment of cancer. Cancer therapy is modeled as the patient's Markov Decision Problem, with the objective of maximizing the patient's discounted expected quality of life years. Patients make decisions on the duration of therapy based on the progression of the disease as well as their own preferences. We obtain a powerful analytic decision tool through which patients may select their preferred treatment strategy. We illustrate the tradeoffs patients in a numerical example and calculate the value lost to a cohort in suboptimal strategies. In a second model patients may make choices to include drug holidays. By delaying therapy, the patient temporarily forgoes the gains of therapy in order to delay its side effects. We obtain an analytic tool that allows numerical approximations of the optimal times of delay.

Original languageEnglish
Article number111237
Number of pages15
JournalJournal of Theoretical Biology
Volume551-552
DOIs
Publication statusPublished - 2022

Keywords

  • Cancer therapy
  • Dynamic optimization
  • Markov decision processes
  • Quality of life

Fingerprint

Dive into the research topics of 'A Markovian decision model of adaptive cancer treatment and quality of life'. Together they form a unique fingerprint.

Cite this