A microstructure-based elastoplastic model to describe the behaviour of a compacted clayey silt in isotropic and triaxial compression

Guido Musso, Arash Azizi, Cristina Jommi

Research output: Contribution to journalArticleScientific

13 Citations (Scopus)
51 Downloads (Pure)

Abstract

The paper focuses on the hydromechanical behaviour of an unsaturated compacted clayey silt, accounting for fabric changes induced by drying–wetting cycles occurring at low stress levels. The response along isotropic compression and triaxial compression (shear) at constant water content was investigated by laboratory tests on both as-compacted and dried–wetted samples. Compaction induces a microstructural porosity pertinent to clay peds and a macrostructural porosity external to the peds. Drying–wetting cycles decrease the microporosity and increase the macroporosity, which reduces the water retention capacity, increases the compressibility, and promotes higher peak strengths with more brittle behaviour during triaxial compression. A coupled double-porosity elastic–plastic model was formulated to simulate the experimental results. A nonassociated flow rule was defined for the macrostructure, modifying a stress–dilatancy relationship for saturated granular soils to account for the increase in dilatancy with suction observed in the experiments. The average skeleton stress and suction were adopted as stress variables. As correctly predicted by the model, the shear strength at critical state is not significantly influenced by the degree of saturation or by the hydraulic history. On the contrary, the higher peak strength, brittleness, and dilatancy of the dried–wetted samples are mostly explained by their reduced water-retention capacity.
Original languageEnglish
Pages (from-to)1025-1043
Number of pages19
JournalCanadian Geotechnical Journal
Volume57
Issue number7
DOIs
Publication statusPublished - 2020

Bibliographical note

Accepted Author Manuscript

Keywords

  • Compacted silt
  • Double-porosity formulation
  • Drying-wetting cycles
  • Hydromechanical behaviour
  • Stress-dilatancy relationship

Fingerprint

Dive into the research topics of 'A microstructure-based elastoplastic model to describe the behaviour of a compacted clayey silt in isotropic and triaxial compression'. Together they form a unique fingerprint.

Cite this