A neurorobotic platform for locomotor prosthetic development in rats and mice

J von Zitzewitz, L Asboth, N Fumeaux, N Hasse, L Baud, Heike Vallery, G Courtine

    Research output: Contribution to journalArticleScientificpeer-review

    11 Citations (Scopus)
    261 Downloads (Pure)

    Abstract

    Objectives. We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. Approach. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Main Results. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. Significance. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.
    Original languageEnglish
    Article number026007
    Pages (from-to)1 - 15
    JournalJournal of Neural Engineering
    Volume13
    Issue number2
    DOIs
    Publication statusPublished - 2016

    Keywords

    • robotics
    • spinal cord injury
    • neuroprosthetics
    • locomotion
    • balance

    Fingerprint

    Dive into the research topics of 'A neurorobotic platform for locomotor prosthetic development in rats and mice'. Together they form a unique fingerprint.

    Cite this