TY - JOUR
T1 - A new approach for coupled modelling of the structural and thermo-physical properties of molten salts. Case of a polymeric liquid LiF-BeF2
AU - Smith, A. L.
AU - Capelli, E.
AU - Konings, R. J.M.
AU - Gheribi, A. E.
PY - 2020
Y1 - 2020
N2 - The (Li,Be)Fx fluoride salt is an ionic liquid with complex non-ideal thermodynamic behaviour due to the formation of short-range order. In this work, we explore the relationship between local structure, thermo-physical and thermodynamic properties in this system using a multidisciplinary approach that couples molecular dynamics simulations using the Polarizable Ion Model (PIM) and thermodynamic modelling assessment using the CALPHAD method. The density, thermal expansion, viscosity, thermal conductivity, molar and mixing enthalpies and heat capacity of the (Li,Be)Fx melt are extracted from the polarizable ionic interaction potentials and investigated across a wide range of compositions and temperatures. The agreement with the available experimental data is generally very good. The local structure is also examined in detail, in particular the transition between a molecular liquid with Li+, BeF4 2− and F− predominant species at low BeF2 content, and a polymeric liquid at high BeF2 content, with the formation of polymers (Be2F7 3−, Be3F10 4−, Be4F13 5−, etc.), and finally of a three-dimensional network of corner-sharing tetrahedrally coordinated Be2+ cations for pure BeF2. Based on the available experimental information and the output of the MD simulations, we moreover develop for the first time a coupled structural-thermodynamic model for the LiF-BeF2 system based on the quasi-chemical formalism in the quadruplet approximation, that provides a physical description of the melt and reproduces (in addition to the thermodynamic data) the chemical speciation of beryllium polymeric species predicted from the simulations.
AB - The (Li,Be)Fx fluoride salt is an ionic liquid with complex non-ideal thermodynamic behaviour due to the formation of short-range order. In this work, we explore the relationship between local structure, thermo-physical and thermodynamic properties in this system using a multidisciplinary approach that couples molecular dynamics simulations using the Polarizable Ion Model (PIM) and thermodynamic modelling assessment using the CALPHAD method. The density, thermal expansion, viscosity, thermal conductivity, molar and mixing enthalpies and heat capacity of the (Li,Be)Fx melt are extracted from the polarizable ionic interaction potentials and investigated across a wide range of compositions and temperatures. The agreement with the available experimental data is generally very good. The local structure is also examined in detail, in particular the transition between a molecular liquid with Li+, BeF4 2− and F− predominant species at low BeF2 content, and a polymeric liquid at high BeF2 content, with the formation of polymers (Be2F7 3−, Be3F10 4−, Be4F13 5−, etc.), and finally of a three-dimensional network of corner-sharing tetrahedrally coordinated Be2+ cations for pure BeF2. Based on the available experimental information and the output of the MD simulations, we moreover develop for the first time a coupled structural-thermodynamic model for the LiF-BeF2 system based on the quasi-chemical formalism in the quadruplet approximation, that provides a physical description of the melt and reproduces (in addition to the thermodynamic data) the chemical speciation of beryllium polymeric species predicted from the simulations.
KW - CALPHAD
KW - Fluoride salts
KW - Molecular dynamics (Polarizable Ion Model)
KW - Polymeric liquid
UR - http://www.scopus.com/inward/record.url?scp=85076628027&partnerID=8YFLogxK
U2 - 10.1016/j.molliq.2019.112165
DO - 10.1016/j.molliq.2019.112165
M3 - Article
AN - SCOPUS:85076628027
VL - 299
JO - Journal of Molecular Liquids
JF - Journal of Molecular Liquids
SN - 0167-7322
M1 - 112165
ER -