Abstract
This work presents a novel framework for numerically simulating the depressurization of tanks and pipelines containing carbon dioxide (CO2). The framework focuses on efficient solution strategies for the coupled system of fluid flow equations and thermodynamic constraints. A key contribution lies in proposing a new set of equations for phase equilibrium calculations which simplifies the traditional vapour–liquid equilibrium (VLE) calculations for two-phase CO2 mixtures. The first major novelty resides in the reduction of the conventional four-equation VLE system to a single equation, enabling efficient solution using a non-linear solver. This significantly reduces computational cost compared to traditional methods. Furthermore, a second novelty is introduced by deriving an ordinary differential equation (ODE) directly from the UV-Flash equation. This ODE can be integrated alongside the governing fluid flow equations, offering a computationally efficient approach for simulating depressurization processes.
Original language | English |
---|---|
Article number | 106524 |
Number of pages | 14 |
Journal | Computers and Fluids |
Volume | 289 |
DOIs | |
Publication status | Published - 2025 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- CO transport
- HEM
- Phase transition
- Real gas
- Span–Wagner
- UV-Flash