Abstract
This paper investigates the implementation of a nonlocal regularisation of the material point method to mitigate mesh-dependency issues for the simulation of large deformation problems in brittle soils. The adopted constitutive description corresponds to a simple elastoplastic model with nonlinear strain softening. A number of benchmark simulations, assuming static and dynamic conditions, were performed to show the importance of regularisation, as well as to assess the performance and robustness of the implemented nonlocal approach. The relevance of addressing stress oscillation issues, due to material points crossing element boundaries, is also demonstrated. The obtained results provide relevant insights into brittle materials undergoing large deformations within the MPM framework.
Original language | English |
---|---|
Article number | 106424 |
Number of pages | 13 |
Journal | Computers and Geotechnics |
Volume | 172 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- Brittle soil
- Material point method
- Mesh dependency
- Nonlocal regularisation
- Stress oscillations