A Novel Engine Architecture for Low NOx Emissions

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

137 Downloads (Pure)

Abstract

The fuel efficiency of turbofan engines has improved significantly, hence reducing aviation's CO2 emissions. However, the increased operating pressure and temperature for fuel efficiency cause adverse effects on NOx emissions. Therefore, a novel engine concept, which can reduce NOx emissions without affecting the cycle efficiency, is of high interest to the aviation community. This paper investigates the potential of an intercooler and inter-turbine burner (ITB) for the future low NOx aircraft propulsion system. The study evaluates performance and NOx emissions of four engine architectures: a very high bypass ratio (VHBR) turbofan engine (baseline), a VHBR engine with intercooler, a VHBR engine with ITB, and a VHBR engine with both intercooler and ITB. The cycles are optimized for minimum cruise Thrust Specific Fuel Consumption (TSFC), considering the same design space, thrust requirements, and operational constraints. The ITB is only used during take-off to minimize cruise fuel consumption. The analysis shows that using an ITB solely, with the energy split of 75% (the first burner) / 25% (ITB), reduces the cruise NOx emission by 26%, and the cruise TSFC slightly by 0.5%. The intercooler alone reduces the NOx emissions by 16% and the cruise TSFC by 0.8%. The combination of intercooler and ITB reduces the NOx emissions further by 38%. The analysis confirms that introducing an intercooler and ITB can potentially resolve the contradicting effects of fuel efficiency and NOx emissions for the future advanced turbofan engine.

Original languageEnglish
Title of host publicationAircraft Engine; Ceramics and Ceramic Composites
PublisherThe American Society of Mechanical Engineers (ASME)
Number of pages11
ISBN (Electronic)9780791885970
DOIs
Publication statusPublished - 2022
EventASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022 - Rotterdam, Netherlands
Duration: 13 Jun 202217 Jun 2022

Publication series

NameProceedings of the ASME Turbo Expo
Volume1

Conference

ConferenceASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022
Country/TerritoryNetherlands
CityRotterdam
Period13/06/2217/06/22

Keywords

  • Inter-stage turbine burner
  • Intercooler
  • low NOemissions
  • Novel turbofan architecture

Fingerprint

Dive into the research topics of 'A Novel Engine Architecture for Low NOx Emissions'. Together they form a unique fingerprint.

Cite this