TY - JOUR
T1 - A parallel N-dimensional Space-Filling Curve library and its application in massive point cloud management
AU - Guan, Xuefeng
AU - Van Oosterom, Peter
AU - Cheng, Bo
PY - 2018/8/15
Y1 - 2018/8/15
N2 - Because of their locality preservation properties, Space-Filling Curves (SFC) have been widely used in massive point dataset management. However, the completeness, universality, and scalability of current SFC implementations are still not well resolved. To address this problem, a generic n-dimensional (nD) SFC library is proposed and validated in massive multiscale nD points management. The library supports two well-known types of SFCs (Morton and Hilbert) with an object-oriented design, and provides common interfaces for encoding, decoding, and nD box query. Parallel implementation permits effective exploitation of underlying multicore resources. During massive point cloud management, all xyz points are attached an additional random level of detail (LOD) value l. A unique 4D SFC key is generated from each xyzl with this library, and then only the keys are stored as flat records in an Oracle Index Organized Table (IOT). The key-only schema benefits both data compression and multiscale clustering. Experiments show that the proposed nD SFC library provides complete functions and robust scalability for massive points management. When loading 23 billion Light Detection and Ranging (LiDAR) points into an Oracle database, the parallel mode takes about 10 h and the loading speed is estimated four times faster than sequential loading. Furthermore, 4D queries using the Hilbert keys take about 1∼5 s and scale well with the dataset size.
AB - Because of their locality preservation properties, Space-Filling Curves (SFC) have been widely used in massive point dataset management. However, the completeness, universality, and scalability of current SFC implementations are still not well resolved. To address this problem, a generic n-dimensional (nD) SFC library is proposed and validated in massive multiscale nD points management. The library supports two well-known types of SFCs (Morton and Hilbert) with an object-oriented design, and provides common interfaces for encoding, decoding, and nD box query. Parallel implementation permits effective exploitation of underlying multicore resources. During massive point cloud management, all xyz points are attached an additional random level of detail (LOD) value l. A unique 4D SFC key is generated from each xyzl with this library, and then only the keys are stored as flat records in an Oracle Index Organized Table (IOT). The key-only schema benefits both data compression and multiscale clustering. Experiments show that the proposed nD SFC library provides complete functions and robust scalability for massive points management. When loading 23 billion Light Detection and Ranging (LiDAR) points into an Oracle database, the parallel mode takes about 10 h and the loading speed is estimated four times faster than sequential loading. Furthermore, 4D queries using the Hilbert keys take about 1∼5 s and scale well with the dataset size.
KW - Level of detail
KW - Parallel processing
KW - Point clouds
KW - Space-filling curve
UR - http://www.scopus.com/inward/record.url?scp=85051709103&partnerID=8YFLogxK
U2 - 10.3390/ijgi7080327
DO - 10.3390/ijgi7080327
M3 - Article
SN - 2220-9964
VL - 7
JO - ISPRS International Journal of Geo-Information
JF - ISPRS International Journal of Geo-Information
IS - 8
M1 - 327
ER -