TY - JOUR
T1 - A pilot-scale microwave technology for sludge sanitization and drying
AU - Mawioo, Peter M.
AU - Garcia, Hector A.
AU - Hooijmans, Christine M.
AU - Velkushanova, Konstantina
AU - Simonič, Marjana
AU - Mijatović, Ivan
AU - Brdjanovic, Damir
PY - 2017
Y1 - 2017
N2 - Large volumes of sludge are produced from onsite sanitation systems in densely populated areas (e.g. slums and emergency settlements) and wastewater treatment facilities that contain high amounts of pathogens. There is a need for technological options which can effectively treat the rapidly accumulating sludge under these conditions. This study explored a pilot-scale microwave (MW) based reactor as a possible alternative for rapid sludge treatment. The reactor performance was examined by conducting a series of batch tests using centrifuged waste activated sludge (C-WAS), non-centrifuged waste activated sludge (WAS), faecal sludge (FS), and septic tank sludge (SS). Four kilograms of each sludge type were subjected to MW treatment at a power of 3.4 kW for various time durations ranging from 30 to 240 min. During the treatment the temperature change, bacteria inactivation (E. coli, coliforms, Staphylococcus aureus, and enterococcus faecalis) and sludge weight/volume reduction were measured. Calorific values (CV) of the dried sludge and the nutrient content (total nitrogen (TN) and total phosphorus (TP)) in both the dried sludge and the condensate were also determined. It was found that MW treatment was successful to achieve a complete bacterial inactivation and a sludge weight/volume reduction above 60%. Besides, the dried sludge and condensate had high energy (≥ 16 MJ/kg) and nutrient contents (solids; TN ≥ 28 mg/g TS and TP ≥ 15 mg/g TS; condensate TN ≥ 49 mg/L TS and TP ≥ 0.2 mg/L), having the potential to be used as biofuel, soil conditioner, fertilizer, etc. The MW reactor can be applied for the rapid treatment of sludge in areas such as slums and emergency settlements.
AB - Large volumes of sludge are produced from onsite sanitation systems in densely populated areas (e.g. slums and emergency settlements) and wastewater treatment facilities that contain high amounts of pathogens. There is a need for technological options which can effectively treat the rapidly accumulating sludge under these conditions. This study explored a pilot-scale microwave (MW) based reactor as a possible alternative for rapid sludge treatment. The reactor performance was examined by conducting a series of batch tests using centrifuged waste activated sludge (C-WAS), non-centrifuged waste activated sludge (WAS), faecal sludge (FS), and septic tank sludge (SS). Four kilograms of each sludge type were subjected to MW treatment at a power of 3.4 kW for various time durations ranging from 30 to 240 min. During the treatment the temperature change, bacteria inactivation (E. coli, coliforms, Staphylococcus aureus, and enterococcus faecalis) and sludge weight/volume reduction were measured. Calorific values (CV) of the dried sludge and the nutrient content (total nitrogen (TN) and total phosphorus (TP)) in both the dried sludge and the condensate were also determined. It was found that MW treatment was successful to achieve a complete bacterial inactivation and a sludge weight/volume reduction above 60%. Besides, the dried sludge and condensate had high energy (≥ 16 MJ/kg) and nutrient contents (solids; TN ≥ 28 mg/g TS and TP ≥ 15 mg/g TS; condensate TN ≥ 49 mg/L TS and TP ≥ 0.2 mg/L), having the potential to be used as biofuel, soil conditioner, fertilizer, etc. The MW reactor can be applied for the rapid treatment of sludge in areas such as slums and emergency settlements.
KW - Faecal sludge
KW - Microwave treatment
KW - Pathogen reduction
KW - Septic tank sludge
KW - Volume reduction
KW - Waste activated sludge
UR - http://resolver.tudelft.nl/uuid:e321134d-b02a-4d13-8eb7-109c3c5866fa
UR - http://www.scopus.com/inward/record.url?scp=85020304666&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2017.06.004
DO - 10.1016/j.scitotenv.2017.06.004
M3 - Article
AN - SCOPUS:85020304666
VL - 601-602
SP - 1437
EP - 1448
JO - Science of the Total Environment
JF - Science of the Total Environment
SN - 0048-9697
ER -