Abstract
To assess the impact of implementing energy efficiency and renewable energy measures, urban building energy models are emerging. In these models, due to the lack of data, the natural variability of the existing building stock is often highly underestimated and uncertainty on the simulated energy use arises. Therefore, this work proposes a probabilistic building characterization method to model the variability of the existing residential building stock. The method estimates realistic distributions of five input variables: U-values of the floor, external walls, windows and roof as well as window-to-wall ratio, based on known data (location, geometry and construction year). First, quantile regression has been implemented to generate the uncorrelated distributions based on the Flemish energy performance certificates database. The accuracy of the marginal distributions is good, as the empirical coverage on the 50%, 80%, 90% and 98% prediction interval deviates 0.6% at most. However, it is needed to include the correlations between these variables. Hence, three main methods to build multivariate distributions from marginal distributions and to draw correlated samples are implemented and extensively compared. The Gaussian copula method is put forward as the preferred method. Considering the mean-maximum discrepancy (MMD), this method performs eight times better than the uncorrelated case (MMD of 0.0027 versus 0.0228).
Original language | English |
---|---|
Article number | 110566 |
Number of pages | 12 |
Journal | Energy and Buildings |
Volume | 230 |
DOIs | |
Publication status | Published - 2021 |
Bibliographical note
Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-careOtherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Keywords
- District energy simulation
- Input data
- Multivariate probability distribution
- Scenario generation
- Uncertainty
- Urban building energy modelling