A pulse generator simulating Ge-detector signals for dead-time and pile-up correction in gamma-ray spectrometry in INAA without distortion of the detector spectrum

S. S. Then*, F. D.P. Geurink, P. Bode, R. M. Lindstrom

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

22 Citations (Scopus)

Abstract

Commerecially available pulse generators for use in γ-ray spectroscopy to correct for dead-time and pile-up losses share the problem that the fall-time of the output pulses does not match the fall-time of the detector pulse. Upon pulse shaping in the main amplifier the pulser's signals result in a considerable undershoot fo the amplifier's output signal, which cannot be restored by the P/Z network. As a result, peaks in the γ-ray spectrum are broadened. Moreover, amplitude stability of the generators is often poorer than the overall gain stability of the spectrometer. To overcome these problems a special pulse generator has been developed at the Interfaculty Reactor Institute, which simulates Ge-detector signals. It generates pulses with a constant frequency of 25 Hz using a crystal oscillator controlled mercury relay. The stability of the generator's amplitude and frequency is extremely high and the peak-shapes in the γ-ray spectrum are not distorted.

Original languageEnglish
Pages (from-to)249-252
Number of pages4
JournalJournal of Radioanalytical and Nuclear Chemistry
Volume215
Issue number2
DOIs
Publication statusPublished - 25 Apr 1997

Fingerprint

Dive into the research topics of 'A pulse generator simulating Ge-detector signals for dead-time and pile-up correction in gamma-ray spectrometry in INAA without distortion of the detector spectrum'. Together they form a unique fingerprint.

Cite this