A quantum dot in germanium proximitized by a superconductor

Lazar Lakic, William I.L. Lawrie, David van Driel, Lucas E.A. Stehouwer, Yao Su, Menno Veldhorst, Giordano Scappucci, Ferdinand Kuemmeth, Anasua Chatterjee*

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

11 Downloads (Pure)

Abstract

As one of the few group IV materials with the potential to host superconductor–semiconductor hybrid devices, planar germanium hosting proximitized quantum dots is a compelling platform to achieve and combine topological superconductivity with existing and new qubit modalities. We demonstrate a quantum dot in a Ge/SiGe heterostructure proximitized by a platinum germanosilicide (PtSiGe) superconducting lead, forming a superconducting lead–quantum dot–superconducting lead junction. We show tunability of the coupling strength between the quantum dot and the superconducting lead, and gate control of the ratio of charging energy and the induced gap, and we tune the ground state of the system between even and odd parity. Furthermore, we characterize critical magnetic field strengths, finding a critical out-of-plane field of 0.90 ± 0.04 T. Finally, we explore sub-gap spin splitting, observing rich physics in the resulting spectra, that we model using a zero-bandwidth model in the Yu–Shiba–Rusinov limit. Our findings open up the physics of alternative spin and superconducting qubits, and the physics of Josephson junction arrays, in germanium.
Original languageEnglish
Pages (from-to)552-558
Number of pages7
JournalNature Materials
Volume24
Issue number4
DOIs
Publication statusPublished - 2025

Fingerprint

Dive into the research topics of 'A quantum dot in germanium proximitized by a superconductor'. Together they form a unique fingerprint.

Cite this