Abstract
Solid-state batteries with lithium metal anodes are considered the next major technology leap with respect to today’s lithium-ion batteries, as they promise a significant increase in energy density. Expectations for solid-state batteries from the automotive and aviation sectors are high, but their implementation in industrial production remains challenging. Here, we report a solid-state lithium–metal battery enabled by a polymer electrolyte consisting of a poly(DMADAFSI) cationic polymer and LiFSI in Pyr13FSI as plasticizer. The polymer electrolyte is infiltrated and solidified in the pores of a commercial LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode with up to 2.8 mAh cm–2 nominal areal capacity and in the pores of a 25 μm thin commercial polypropylene separator. Cathode and separator are finally laminated into a cell in combination with a commercial 20 μm thin lithium metal anode. Our demonstration of a solid-state polymer battery cycling at full nominal capacity employing exclusively commercially available components available at industrial scale represents a critical step forward toward the commercialization of a competitive all-solid-state battery technology.
Original language | English |
---|---|
Pages (from-to) | 10037-10043 |
Number of pages | 7 |
Journal | ACS Applied Energy Materials |
Volume | 7 |
Issue number | 21 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- high-mass-loading NMC811
- infiltration
- polymer
- polymerized ionic liquid
- solid-state batteries
- thin lithium