A Run a Day Won't Keep the Hacker Away: Inference Attacks on Endpoint Privacy Zones in Fitness Tracking Social Networks

Karel Dhondt, Victor Le Pochat, VOULIMENEAS ALEXIOS, Wouter Joosen, Stijn Volckaert

Research output: Chapter in Book/Conference proceedings/Edited volumeConference contributionScientificpeer-review

2 Citations (Scopus)

Abstract

Fitness tracking social networks such as Strava allow users to record sports activities and share them publicly. Sharing encourages peer interaction but also constitutes a risk, because an activity's start or finish may inadvertently reveal privacy-sensitive locations such as a home or workplace. To mitigate this risk, networks introduced endpoint privacy zones (EPZs), which hide track portions around protected locations. In this paper, we show that EPZ implementations of major services remain vulnerable to inference attacks that significantly reduce the effective anonymity provided by the EPZ, and even reveal the protected location. Our attack leverages distance information leaked in activity metadata, street grid data, and the locations of the entry points into the EPZ. This yields a constrained search space where we use regression analysis to predict protected locations. Our evaluation on 1.4 million Strava activities shows that our attack discovers the protected location for up to 85% of EPZs. Larger EPZs reduce the performance of our attack, while geographically dispersed activities in sparser street grids yield better performance. We propose six countermeasures, that, however, come with a usability trade-off, and responsibly disclosed our findings and countermeasures to the major networks.

Original languageEnglish
Title of host publicationCCS 2022 - Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security
Pages801-814
Number of pages14
ISBN (Electronic)9781450394505
DOIs
Publication statusPublished - 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'A Run a Day Won't Keep the Hacker Away: Inference Attacks on Endpoint Privacy Zones in Fitness Tracking Social Networks'. Together they form a unique fingerprint.

Cite this