A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video

Research output: Contribution to journalArticleScientificpeer-review

6 Citations (Scopus)
86 Downloads (Pure)

Abstract

Mapping coastal bathymetry from remote sensing becomes increasingly more attractive for the coastal community. It is facilitated by a rising availability of drone and satellite data, advances in data science, and an open-source mindset. Coastal bathymetry, but also wave directions, celerity and near-surface currents can simultaneously be derived from aerial video of a wave field. However, the required video processing is usually extensive, requires skilled supervision, and is tailored to a fieldsite. This study proposes a video-processing algorithm that resolves these issues. It automatically adapts to the video data and continuously returns mapping updates and thereby aims to make wave-based remote sensing more inclusive to the coastal community. The code architecture for the first time includes the dynamic mode decomposition (DMD) to reduce the data complexity of wavefield video. The DMD is paired with loss-functions to handle spectral noise and a novel spectral storage system and Kalman filter to achieve fast converging measurements. The algorithm is showcased for fieldsites in the USA, the UK, the Netherlands, and Australia. The performance with respect to mapping bathymetry was validated using ground truth data. It was demonstrated that merely 32 s of video footage is needed for a first mapping update with average depth errors of 0.9–2.6 m. These further reduced to 0.5–1.4 m as the videos continued and more mapping updates were returned. Simultaneously, coherent maps for wave direction and celerity were achieved as well as maps of local near-surface currents. The algorithm is capable of mapping the coastal parameters on-the-fly and thereby offers analysis of video feeds, such as from drones or operational camera installations. Hence, the innovative application of analysis techniques like the DMD enables both accurate and unprecedentedly fast coastal reconnaissance. The source code and data of this article are openly available.
Original languageEnglish
Article number4742
Number of pages33
JournalRemote Sensing
Volume13
Issue number23
DOIs
Publication statusPublished - 2021

Keywords

  • Bathymetry
  • Coastal zone
  • Depth inversion
  • Dynamic mode decomposition
  • On-the-fly
  • Remote sensing
  • Waves

Fingerprint

Dive into the research topics of 'A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video'. Together they form a unique fingerprint.

Cite this