A semi-analytical study on the residual transport of salinity and sediment trapping in well-mixed estuaries

Xiaoyan Wei, Mohit Kumar, Henk Schuttelaars

Research output: Contribution to conferenceAbstractScientific

40 Downloads (Pure)


Along-channel and cross-channel sediment transport in tidal estuaries is usually driven by tides, density gradients, Coriolis’s force, wind stress, channel curvature and bathymetric variations. Since the water motion is influenced by density-induced gravitational circulation which in turn affects the salinity distribution, the coupled water motion and salinity has a potentially strong effect on the residual sediment transport, and thus the trapping of fine sediment. To better understand the dynamical effects of water motion and salinity on sediment transport, the salinity field has to be computed consistently. In this work, the water density is assumed to be a function of salinity only, thus ignoring the influence of temperature and assuming the sediment concentration to be low. To obtain the coupled water motion and salinity, the three-dimensional shallow water equations and the salinity equation are solved simultaneously using a perturbation method together with an iterative finite element method (Kumar et al., 2016; Wei et al, in preparation), resulting in a consistent water motion and salinity field. This information is then used to calculate the sediment concentrations, so that the influence of the salt dynamics on sediment transport is prognostically calculated. Owing to the adopted perturbation method, the contribution of various physical processes to residual sediment transport can be studied separately, which allows for a full investigation on individual contribution of each process to longitudinal/lateral transport of salinity and sediment. Moreover, as wind is another important forcing of estuarine circulation (Chen et al., 2009, de Jonge and van Beusekom 1995, Ridderinkhof et al., 2000), the influence of wind stress on estuarine sediment transport will be studied. The present work will bring insights into sediment transport and trapping mechanisms in real estuaries, for example, the Delaware estuary.
Original languageEnglish
Number of pages2
Publication statusPublished - 2016
Event18th Physics of Estuaries and Coastal Seas Conference, 2016 - Scheveningen, The Haque, Netherlands
Duration: 9 Oct 201614 Oct 2016
Conference number: 18


Conference18th Physics of Estuaries and Coastal Seas Conference, 2016
Abbreviated titlePECS 2016
CityThe Haque
Internet address


  • lateral circulation
  • residual transport
  • sediment
  • baroclinic forcing
  • estuaries


Dive into the research topics of 'A semi-analytical study on the residual transport of salinity and sediment trapping in well-mixed estuaries'. Together they form a unique fingerprint.

Cite this