A shear-wave seismic system using full waveform inversion to look ahead of a tunnel-boring machine

Pawan Bharadwaj, Guy Drijkoningen, Wim Mulder, Jan Willem Thorbecke, Boriszlav Neducza, R Jenneskens

Research output: Contribution to journalArticleScientificpeer-review

19 Citations (Scopus)
85 Downloads (Pure)


In the near surface with unconsolidated soils, shear-wave properties can often be characterised better and with a higher resolution than compressional-wave properties. To enable imaging ahead of a tunnel-boring machine, we developed a seismic prediction system with a few shear-wave vibrators and horizontal receivers. The boring process is interrupted at regular intervals to carry out active surveys. The vibrators are then pushed against the rock or soil in front of the cutting wheel of the machine. The design of the vibrators is based on linear synchronous motor technology that can generate very low frequencies, starting at 5 Hz. These vibrators generate a force in a direction perpendicular to the tunnel axis. Horizontal receivers measure the particle velocity, mainly due to the horizontally polarised shear waves. Because imaging with conventional migration methods suffers from artefacts, caused by the incomplete aperture and inaccuracies in the assumed velocity model, we use two-dimensional horizontally polarised shear full-waveform inversion to resolve the subsurface shear properties. The classic cycle-skipping problem, which can make the application of fullwaveform inversion cumbersome, is avoided by the capacity of the vibrators to generate low frequencies. In this paper, we demonstrate the capabilities of the proposed seismic system through a number of synthetic and field experiments.
Original languageEnglish
Pages (from-to)210-224
JournalNear Surface Geophysics
Publication statusPublished - 2017


Dive into the research topics of 'A shear-wave seismic system using full waveform inversion to look ahead of a tunnel-boring machine'. Together they form a unique fingerprint.

Cite this