A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%

Malte Köhler*, Manuel Pomaska, Paul Procel, Rudi Santbergen, Andreas Lambertz, Weiyuan Duan, Alexander Eberst, Martina Luysberg, Olindo Isabella, More Authors

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

12 Citations (Scopus)
24 Downloads (Pure)

Abstract

A highly transparent passivating contact (TPC) as front contact for crystalline silicon (c-Si) solar cells could in principle combine high conductivity, excellent surface passivation and high optical transparency. However, the simultaneous optimization of these features remains challenging. Here, we present a TPC consisting of a silicon-oxide tunnel layer followed by two layers of hydrogenated nanocrystalline silicon carbide (nc-SiC:H(n)) deposited at different temperatures and a sputtered indium tin oxide (ITO) layer (c-Si(n)/SiO2/nc-SiC:H(n)/ITO). While the wide band gap of nc-SiC:H(n) ensures high optical transparency, the double layer design enables good passivation and high conductivity translating into an improved short-circuit current density (40.87 mA cm−2), fill factor (80.9%) and efficiency of 23.99 ± 0.29% (certified). Additionally, this contact avoids the need for additional hydrogenation or high-temperature postdeposition annealing steps. We investigate the passivation mechanism and working principle of the TPC and provide a loss analysis based on numerical simulations outlining pathways towards conversion efficiencies of 26%.

Original languageEnglish
Pages (from-to)529-537
Number of pages9
JournalNature Energy
Volume6
Issue number5
DOIs
Publication statusPublished - 2021

Fingerprint

Dive into the research topics of 'A silicon carbide-based highly transparent passivating contact for crystalline silicon solar cells approaching efficiencies of 24%'. Together they form a unique fingerprint.

Cite this